Search results for " Sesquilinear forms"
showing 4 items of 4 documents
Extensions of Representable Positive Linear Functionals to Unitized Quasi *-Algebras: A New Method
2014
In this paper we introduce a topological approach for extending a representable linear functional \({\omega}\), defined on a topological quasi *-algebra without unit, to a representable linear functional defined on a quasi *-algebra with unit. In particular, we suppose that \({\omega}\) is continuous and the positive sesquilinear form \({\varphi_\omega}\), associated with \({\omega}\), is closable and prove that the extension \({\overline{\varphi_\omega}^e}\) of the closure \({\overline{\varphi_\omega}}\) is an i.p.s. form. By \({\overline{\varphi_\omega}^e}\) we construct the desired extension.
Closedness and lower semicontinuity of positive sesquilinear forms
2009
The relationship between the notion of closedness, lower semicontinuity and completeness (of a quotient) of the domain of a positive sesquilinear form defined on a subspace of a topological vector space is investigated and sufficient conditions for their equivalence are given.
A survey on solvable sesquilinear forms
2018
The aim of this paper is to present a unified theory of many Kato type representation theorems in terms of solvable forms on a Hilbert space \((H,\langle\cdot,\cdot\rangle)\) In particular, for some sesquilinear forms Ω on a dense domain \(D\subseteq\mathcal {H}\) one looks for a representation \(\Omega(\xi,\eta)= \langle T\xi,\eta\rangle\) \((\xi\epsilon\mathcal{D}\mathcal(T),\eta\epsilon D)\) where T is a densely defined closed operator with domain \(D(\mathcal{T})\subseteq \mathcal{D}\). There are two characteristic aspects of a solvable form on H. One is that the domain of the form can be turned into a reexive Banach space that need not be a Hilbert space. The second one is that represe…
A note on *-derivations of partial *-algebras
2012
A definition of *-derivation of partial *-algebra through a sufficient family of ips-forms is proposed.